Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.182
Filtrar
1.
Cells ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534398

RESUMO

Pathologies such as malaria, hemorrhagic stroke, sickle cell disease, and thalassemia are characterized by the release of hemoglobin degradation products from damaged RBCs. Hematin (liganded with OH-) and hemin (liganded with Cl-)-are the oxidized forms of heme with toxic properties due to their hydrophobicity and the presence of redox-active Fe3. In the present study, using the original LaSca-TM laser particle analyzer, flow cytometry, and confocal microscopy, we showed that both hematin and hemin induce dose-dependent RBC spherization and hemolysis with ghost formation. Hematin and hemin at nanomolar concentrations increased [Ca2+]i in RBC; however, spherization and hemolysis occurred in the presence and absence of calcium, indicating that both processes are independent of [Ca2+]i. Both compounds triggered acute phosphatidylserine exposure on the membrane surface, reversible after 60 min of incubation. A comparison of hematin and hemin effects on RBCs revealed that hematin is a more reactive toxic metabolite than hemin towards human RBCs. The toxic effects of heme derivatives were reduced and even reversed in the presence of albumin, indicating the presence in RBCs of the own recovery system against the toxic effects of heme derivatives.


Assuntos
Cálcio , Hemina , Humanos , Hemina/metabolismo , Hemina/farmacologia , Cálcio/metabolismo , Hemólise , Eritrócitos/metabolismo , Heme/metabolismo
2.
J Phys Chem B ; 128(11): 2745-2754, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38447189

RESUMO

Monosialoganglioside (GM1), a ubiquitous component of lipid rafts, and hemin, an integral part of heme proteins such as hemoglobin, are essential to the cell membranes of brain neurons and erythrocyte red blood cells for regulating cellular communication and oxygen transport. Protoporphyrin IX (PPIX) and its derivative hemin, on the contrary, show significant cytotoxic effects when in excess causing hematological diseases, such as thalassemia, anemia, malaria, and neurodegeneration. However, the in-depth molecular etiology of their interactions with the cell membrane has so far been poorly understood. Herein, the structure of the polymer cushion-supported lipid bilayer (SLB) of the binary mixture of phospholipid and GM1 in the presence of PPIX and its derivative hemin has been investigated to predict the molecular interactions in model phospholipid membranes. A high-resolution synchrotron-based X-ray scattering technique has been employed to explore the out-of-plane structure of the assembly at different compositions and concentrations. The structural changes have been complemented with the isobaric changes in the mean molecular area obtained from the Langmuir monolayer isotherm to predict the additive-induced membrane condensation and fluidization. PPIX-induced fluidization of phospholipid SLB without GM1 was witnessed, which was reversed to condensation with 2-fold higher structural changes in the presence of GM1. A hemin concentration-dependent linear condensing effect was observed in the pristine SLB. The effect was significantly reduced, and the linearity was observed to be lost in the mixed SLB containing GM1. Our study shows that GM1 alters the interaction of hemin and PPIX with the membrane, which could be explained with the aid of hydrophobic and electrostatic interactions. Our study indicates favorable and unfavorable interactions of GM1 with PPIX and hemin, respectively, in the membrane. The observed structural changes in both SLB and the underlying polymer cushion layer lead to the proposal of a molecule-specific interaction model that can benefit the pharmaceutical industries specialized for drug designing. Our study potentially enriches our fundamental biophysical understanding of neurodegenerative diseases and drug-membrane interactions.


Assuntos
Fosfolipídeos , Protoporfirinas , Hemina/metabolismo , Gangliosídeo G(M1)/química , Adsorção , Bicamadas Lipídicas/química , Polímeros
3.
Epigenetics ; 19(1): 2326868, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38465865

RESUMO

Oxidative stress and neuronal dysfunction caused by intracerebral haemorrhage (ICH) can lead to secondary injury. The m6A modification has been implicated in the progression of ICH. This study aimed to investigate the role of the m6A reader YTHDC2 in ICH-induced secondary injury. ICH models were established in rats using autologous blood injection, and neuronal cell models were induced with Hemin. Experiments were conducted to overexpress YTH domain containing 2 (YTHDC2) and examine its effects on neuronal dysfunction, brain injury, and neuronal ferritinophagy. RIP-qPCR and METTL3 silencing were performed to investigate the regulation of YTHDC2 on nuclear receptor coactivator 4 (NCOA4). Finally, NCOA4 overexpression was used to validate the regulatory mechanism of YTHDC2 in ICH. The study found that YTHDC2 expression was significantly downregulated in the brain tissues of ICH rats. However, YTHDC2 overexpression improved neuronal dysfunction and reduced brain water content and neuronal death after ICH. Additionally, it reduced levels of ROS, NCOA4, PTGS2, and ATG5 in the brain tissues of ICH rats, while increasing levels of FTH and FTL. YTHDC2 overexpression also decreased levels of MDA and Fe2+ in the serum, while promoting GSH synthesis. In neuronal cells, YTHDC2 overexpression alleviated Hemin-induced injury, which was reversed by Erastin. Mechanistically, YTHDC2-mediated m6A modification destabilized NCOA4 mRNA, thereby reducing ferritinophagy and alleviating secondary injury after ICH. However, the effects of YTHDC2 were counteracted by NCOA4 overexpression. Overall, YTHDC2 plays a protective role in ICH-induced secondary injury by regulating NCOA4-mediated ferritinophagy.


Assuntos
Adenina , Lesões Encefálicas , Hemina , Animais , Ratos , Adenina/análogos & derivados , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Hemorragia Cerebral/genética , Hemorragia Cerebral/metabolismo , Metilação de DNA , Hemina/farmacologia , Hemina/metabolismo , Estresse Oxidativo , Fatores de Transcrição/metabolismo
4.
Angew Chem Int Ed Engl ; 63(14): e202319690, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38320965

RESUMO

Given the scarcity of novel antibiotics, the eradication of bacterial biofilm infections poses formidable challenges. Upon bacterial infection, the host restricts Fe ions, which are crucial for bacterial growth and maintenance. Having coevolved with the host, bacteria developed adaptive pathways like the hemin-uptake system to avoid iron deficiency. Inspired by this, we propose a novel strategy, termed iron nutritional immunity therapy (INIT), utilizing Ga-CT@P nanocomposites constructed with gallium, copper-doped tetrakis (4-carboxyphenyl) porphyrin (TCPP) metal-organic framework, and polyamine-amine polymer dots, to target bacterial iron intakes and starve them. Owing to the similarity between iron/hemin and gallium/TCPP, gallium-incorporated porphyrin potentially deceives bacteria into uptaking gallium ions and concurrently extracts iron ions from the surrounding bacteria milieu through the porphyrin ring. This strategy orchestrates a "give and take" approach for Ga3+/Fe3+ exchange. Simultaneously, polymer dots can impede bacterial iron metabolism and serve as real-time fluorescent iron-sensing probes to continuously monitor dynamic iron restriction status. INIT based on Ga-CT@P nanocomposites induced long-term iron starvation, which affected iron-sulfur cluster biogenesis and carbohydrate metabolism, ultimately facilitating biofilm eradication and tissue regeneration. Therefore, this study presents an innovative antibacterial strategy from a nutritional perspective that sheds light on refractory bacterial infection treatment and its future clinical application.


Assuntos
Infecções Bacterianas , Gálio , Porfirinas , Humanos , Ferro/metabolismo , Hemina/metabolismo , Bactérias/metabolismo , Antibacterianos/metabolismo , Biofilmes , Gálio/farmacologia , Porfirinas/farmacologia , Porfirinas/metabolismo , Infecções Bacterianas/tratamento farmacológico , Homeostase , Íons/metabolismo , Polímeros/metabolismo
5.
Anal Chim Acta ; 1295: 342320, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38355221

RESUMO

BACKGROUND: G-quadruplex (G4)/hemin DNAzymes with conversion of substrates into colorimetric readouts are well recognized as convenient biocatalysis tools in sensor development. However, the previously developed colorimetric G4/hemin DNAzymes are diffusive substrate-based DNAzymes (DSBDs). The current colorimetric DSBDs have several drawbacks including high dosage (∼mM) of diffusive substrates (DSs), colorimetric product toxicity, and single colorimetric readout without tolerance to fluctuation of experimental factors and background. In addition, the usage of high-dosage DSs can smear the G4 foldings and their discard is more harmful to environment. Therefore, exploring alternative DNAzymes with potential to overcome these drawbacks of DSBDs is urgently needed. RESULTS: We herein developed associative substrate-based DNAzymes (ASBDs). Cyanine dyes were selected as associative substrates (ASs) due to their binding competency with G4/hemin DNAzymes. With respect to DSBDs, ASBDs needed only low dosage (∼10 µM) of ASs to be able to cause a rapid and visible substrate conversion. In addition, since cyanine dyes are NIR dyes with high extinction coefficients and their conversion products have absorption bands at shorter wavelength. Therefore, a colorimetric ratio response can be developed to follow activities of G4/hemin DNAzymes with competency to tolerate fluctuation of experimental factors and background. In particular, herein developed ASBDs can endure somewhat concentration fluctuation of H2O2. ASBDs are able to cowork with other enzymes (for example, glucose oxidase) to realize cascade sensing. SIGNIFICANCE: The developed ASBDs can operate at low dosage of substrates with a colorimetric ratio response and can overcome the drawbacks met in DSBDs. We expect that, by designing ASs with fruitful color panel in the future, our work will inspire more interesting in developing environment-benign and low-carbon G4/hemin DNAzymes and desired colorful high-performance sensors.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , DNA Catalítico/metabolismo , Hemina/metabolismo , Peróxido de Hidrogênio/metabolismo , Colorimetria/métodos , Corantes , Técnicas Biossensoriais/métodos
6.
Biophys Chem ; 307: 107193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320409

RESUMO

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a moonlighting enzyme. Apart from its primary role in the glycolytic pathway, in many bacterial species it is found in the extracellular milieu and also on the bacterial surface. Positioning on the bacterial surface allows the GAPDH molecule to interact with many host molecules such as plasminogen, fibrinogen, fibronectin, laminin and mucin etc. This facilitates the bacterial colonization of the host. Helicobacter pylori is a major human pathogen that causes a number of gastrointestinal infections and is the main cause of gastric cancer. The binding analysis of H. pylori GAPDH (HpGAPDH) with host molecules has not been carried out. Hence, we studied the interaction of HpGAPDH with holo-transferrin, lactoferrin, haemoglobin, fibrinogen, fibronectin, catalase, plasminogen and mucin using biolayer interferometry. Highest and lowest binding affinity was observed with lactoferrin (4.83 ± 0.70 × 10-9 M) and holo-transferrin (4.27 ± 2.39 × 10-5 M). Previous studies established GAPDH as a heme chaperone involved in intracellular heme trafficking and delivery to downstream target proteins. Therefore, to get insights into heme binding, the interaction between HpGAPDH and hemin was analyzed. Hemin binds to HpGAPDH with an affinity of 2.10 µM while the hemin bound HpGAPDH does not exhibit activity. This suggests that hemin most likely binds at the active site of HpGAPDH, prohibiting substrate binding. Blind docking of hemin with HpGAPDH also supports positioning of hemin at the active site. Metal ions were found to inhibit the activity of HpGAPDH, suggesting that it also possibly occupies the substrate binding site. Furthermore, with metal-bound HpGAPDH, hemin binding was not observed, suggesting metal ions act as an inhibitor of hemin binding. Since GAPDH has been identified as a heme chaperone, it will be interesting to analyse the biological consequences of inhibition of heme binding to GAPDH by metal ions.


Assuntos
Helicobacter pylori , Hemina , Humanos , Hemina/metabolismo , Helicobacter pylori/metabolismo , Fibronectinas/metabolismo , Lactoferrina/metabolismo , Ligação Proteica , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Heme/metabolismo , Fibrinogênio , Plasminogênio/metabolismo , Íons/metabolismo , Mucinas/metabolismo
7.
Biochem Biophys Res Commun ; 701: 149629, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330730

RESUMO

Accumulation of free heme B in the plasma can be the result of severe hemolytic events, when the scavenger system for free hemoglobin and heme B is overwhelmed. Free heme B can be oxidized into toxic hemin, which has been proven to activate platelet degranulation and aggregation and promote thrombosis. In the present study we analyzed the effect of hemin on the activation-mediated lysosomal degranulation and CD63 surface expression on platelets using classic flow cytometry and fluorescence microscopy techniques. Classical platelet activators were used as control to distinguish the novel effects of hemin from known activation pathways. CD63 is a tetraspanin protein, also known as lysosomal-associated membrane protein 3 or LAMP-3. In resting platelets CD63 is located within the membrane of delta granules and lysosomes of platelet, from where it is integrated into the platelet outer membrane upon stimulation. We were able to show that hemin like the endogenous platelet activators ADP, collagen or thrombin does provoke CD63 re-localization. Interestingly, only hemin-induced CD63 externalization is dependent on the subtilisin-like pro-protein convertase furin as shown by inhibitor experiments. Furthermore, we were able to demonstrate that hemin induces lysosome secretion, a source of the hemin-mediated CD63 presentation. Again, only the hemin-induced lysosome degranulation is furin dependent. In summary we have shown that the pro-protein convertase furin plays an important role in hemin-mediated lysosomal degranulation and CD63 externalization.


Assuntos
Furina , Hemina , Glicoproteínas da Membrana de Plaquetas , Tetraspanina 30 , Antígenos CD/metabolismo , Plaquetas/metabolismo , Furina/metabolismo , Hemina/metabolismo , Glicoproteínas de Membrana Associadas ao Lisossomo , Ativação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Tetraspanina 30/metabolismo , Humanos
8.
Thromb Res ; 234: 63-74, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38171216

RESUMO

BACKGROUND AND AIMS: Hemolysis is a known risk factor for thrombosis resulting in critical limb ischemia and microcirculatory disturbance and organ failure. Intravasal hemolysis may lead to life-threatening complications due to uncontrolled thrombo-inflammation. Until now, conventional antithrombotic therapies failed to control development and progression of these thrombotic events. Thus, the pathophysiology of these thrombotic events needs to be investigated to unravel underlying pathways and thereby identify targets for novel treatment strategies. METHODS: Here we used classical experimental set-ups as well as high-end flow cytometry, metabolomics and lipidomic analysis to in-depth analyze the effects of hemin on platelet physiology and morphology. RESULTS: Hemin does strongly and swiftly induce platelet activation and this process is modulated by the sGC-cGMP-cGKI signaling axis. cGMP modulation also reduced the pro-aggregatory potential of plasma derived from patients with hemolysis. Furthermore, hemin-induced platelet death evokes distinct platelet subpopulations. Typical cell death markers, such as ROS, were induced by hemin-stimulation and the platelet lipidome was specifically altered by high hemin concentration. Specifically, arachidonic acid derivates, such as PGE2, TXB2 or 12-HHT, were significantly increased. Balancing the cGMP levels by modulation of the sGC-cGMP-cGKI axis diminished the ferroptotic effect of hemin. CONCLUSION: We found that cGMP modulates hemin-induced platelet activation and thrombus formation in vitro and cGMP effects hemin-mediated platelet death and changes in the platelet lipidome. Thus, it is tempting to speculate that modulating platelet cGMP levels may be a novel strategy to control thrombosis and critical limb ischemia in patients with hemolytic crisis.


Assuntos
Hemina , Trombose , Humanos , Hemina/farmacologia , Hemina/metabolismo , Isquemia Crônica Crítica de Membro , Hemólise , Microcirculação , Plaquetas/metabolismo , Trombose/metabolismo
9.
Neuroscience ; 537: 105-115, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38006962

RESUMO

Intracerebral hemorrhage (ICH) is a severe disease with high mortality. Recently, the role of BCL-3 in ICH has started to gain attention, but its mechanism remains unclear. A collagenase injection method was used to establish an ICH model in rats, and the expression of BCL-3 were detected. Rat brain microvascular endothelial cells (rBMECs) were isolated and induced with Hemin to establish an in vitro ICH model. The expression of BCL-3 was assessed, followed by detection of cell apoptosis. In the cell model, the recruitment, polarization, and pro-inflammatory features of the microglia (MGs) were assessed after co-cultured with rBMECs. Finally, in the ICH animal model, after knockdown of BCL-3, comprehensive evaluations of inflammatory responses in brain tissue, polarization and recruitment of microglia, and apoptosis were conducted. Results revealed an upregulated expression of BCL-3 in brain tissue of the ICH animal model. In Hemin-treated rBMECs, an upward trend in BCL-3 expression was observed, accompanied by an increase of cell apoptosis. After co-culturing with the in vitro model, microglia exhibited enhanced M1 polarization and intensified inflammatory responses. However, when BCL-3 expression was inhibited in the in vitro model, a reversal occurred in the polarization tendency and inflammatory responses of microglia. Additionally, after knockdown of BCL-3 in the animal model, notable improvements occurred in M1 polarization, infiltration of macrophages, and inflammatory reactions in the brain tissue. Therefore, BCL-3 modulates the inflammatory response after ICH occurrence through the BMECs/MGs microenvironment. Additionally, BCL-3 might be a potential therapeutic target for ICH management.


Assuntos
Células Endoteliais , Hemina , Animais , Ratos , Hemorragia Cerebral/metabolismo , Células Endoteliais/metabolismo , Hemina/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Proteína 3 do Linfoma de Células B/metabolismo
10.
Int J Biol Macromol ; 254(Pt 3): 128069, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967600

RESUMO

Perfluorooctane sulfonate (PFOS), a representative of perfluorinated compounds in industrial and commercial products, has posed a great threat to animals and humans via environmental exposure and dietary consumption. Herein, we investigated the effects of PFOS binding on the redox state and stability of two hemoproteins (hemoglobin (Hb) and myoglobin (Mb)). Fluorescence spectroscopy, circular dichroism and UV-vis absorption spectroscopy demonstrated that PFOS could induce the conformational changes of proteins along with the exposure of heme cavity and generation of hemichrome, which resulted in the increased release of free hemin. After that, free hemin liberated from hemoproteins led to reactive oxygen species formation, lipid peroxidation, cell membrane damage and loss of cell viability in vascular endothelial cells, while neither Hb nor Mb did show cytotoxicity. Chemical inhibitors of ferroptosis effectively mitigated hemin-caused toxicity, identifying the hemin-dependent ferroptotic cell death mechanisms. These data demonstrated that PFOS posed a potential threat of toxicity through a mechanism which involved its binding to hemoproteins, decreased oxygen transporting capacity, and increased hemin release. Altogether, our findings elucidate the binding mechanisms of PFOS with two hemoproteins, as well as possible risks on vascular endothelial cells, which would have important implications for the human and environmental toxicity of PFOS.


Assuntos
Células Endoteliais , Hemina , Animais , Humanos , Hemina/metabolismo , Células Endoteliais/metabolismo , Oxirredução , Hemoglobinas/química , Dicroísmo Circular , Mioglobina/metabolismo
11.
Protein J ; 43(1): 48-61, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38066289

RESUMO

Hemin, a byproduct of hemoglobin degradation, inflicts oxidative insult to cells. Following its accumulation, several proteins are recruited for heme detoxification with heme oxygenase playing the key role. Chaperones play a protective role primarily by preventing protein degradation and unfolding. They also are known to have miscellaneous secondary roles during similar situations. To discover a secondary role of chaperones during heme stress we studied the role of the chaperone HSPA8 in the detoxification of hemin. In-silico studies indicated that HSPA8 has a well-defined biophoric environment to bind hemin. Through optical difference spectroscopy, we found that HSPA8 binds hemin through its N-terminal domain with a Kd value of 5.9 ± 0.04 µM and transforms into a hemoprotein. The hemoprotein was tested for exhibiting peroxidase activity using guaiacol as substrate. The complex formed reacts with H2O2 and exhibits classical peroxidase activity with an ability to oxidize aromatic and halide substrates. HSPA8 is dose-dependently catalyzing heme polymerization through its N-terminal domain. The IR results reveal that the polymer formed exhibits structural similarities to ß-hematin suggesting its covalent nature. The polymerization mechanism was tested through optical spectroscopy, spin-trap, and activity inhibition experiments. The results suggest that the polymerization occurs through a peroxidase-H2O2 system involving a one-electron transfer mechanism, and the formation of free radical and radical-radical interaction. It highlights a possible role of the HSPA8-hemin complex in exhibiting cytoprotective function during pathological conditions like malaria, sickle cell disease, etc.


Assuntos
Heme , Hemina , Hemina/química , Hemina/metabolismo , Heme/química , Peróxido de Hidrogênio , Polimerização , Peroxidases
12.
Blood ; 143(11): 1018-1031, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38127913

RESUMO

ABSTRACT: Disordered erythropoiesis is a feature of many hematologic diseases, including sickle cell disease (SCD). However, very little is known about erythropoiesis in SCD. Here, we show that although bone marrow (BM) erythroid progenitors and erythroblasts in Hbbth3/+ thalassemia mice were increased more than twofold, they were expanded by only ∼40% in Townes sickle mice (SS). We further show that the colony-forming ability of SS erythroid progenitors was decreased and erythropoietin (EPO)/EPO receptor (EPOR) signaling was impaired in SS erythroid cells. Furthermore, SS mice exhibited reduced responses to EPO. Injection of mice with red cell lysates or hemin, mimicking hemolysis in SCD, led to suppression of erythropoiesis and reduced EPO/EPOR signaling, indicating hemolysis, a hallmark of SCD, and could contribute to the impaired erythropoiesis in SCD. In vitro hemin treatment did not affect Stat5 phosphorylation, suggesting that hemin-induced erythropoiesis suppression in vivo is via an indirect mechanism. Treatment with interferon α (IFNα), which is upregulated by hemolysis and elevated in SCD, led to suppression of mouse BM erythropoiesis in vivo and human erythropoiesis in vitro, along with inhibition of Stat5 phosphorylation. Notably, in sickle erythroid cells, IFN-1 signaling was activated and the expression of cytokine inducible SH2-containing protein (CISH), a negative regulator of EPO/EPOR signaling, was increased. CISH deletion in human erythroblasts partially rescued IFNα-mediated impairment of cell growth and EPOR signaling. Knocking out Ifnar1 in SS mice rescued the defective BM erythropoiesis and improved EPO/EPOR signaling. Our findings identify an unexpected role of hemolysis on the impaired erythropoiesis in SCD through inhibition of EPO/EPOR signaling via a heme-IFNα-CISH axis.


Assuntos
Anemia Falciforme , Eritropoese , Camundongos , Animais , Humanos , Eritropoese/fisiologia , Fator de Transcrição STAT5/metabolismo , Hemólise , Hemina/metabolismo , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Anemia Falciforme/complicações
13.
Neuroscience ; 535: 75-87, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37884088

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH), a subtype of devastating stroke, carries high morbidity and mortality worldwide. CircRNA AFF2 (circAFF2) was significantly increased in ICH patients, but the underlying mechanism of circAFF2 is unknown. METHODS: Hemin was employed to treat neuronal cells to mimic ICH in vitro. Mice were injected with collagenase VII-S to establish in vivo ICH models. Genes and protein expressions were detected using qRT-PCR and Western blotting. The interaction among circAFF2, miR-488, and CLSTN3 was validated by dual-luciferase reporter assay and RNA-RIP. Cell viability, MDA, iron, GSH, and lipid ROS were examined using the MTT, the commercial kits, and flow cytometry, respectively. ICH injury in mice was evaluated using neurological deficit scores and brain water measurements. RESULTS: CircAFF2 was significantly increased in ICH in vivo and in vitro models. CircAFF2 bound to miR-488 and knockdown of circAFF2 or overexpression of miR-488 inhibited hemin-induced injury of neuronal cells as indicated by increased cell viability and reduced markers of oxidative stress and lipid peroxidation. CLSTN3 was the downstream target of miR-488. Silencing of circAFF2 or miR-488 overexpression reduced CLSTN3 expression and protected against the injury of neuronal cells. In vivo experiments finally confirmed that circAFF2 knockdown attenuated mice ICH injury via the miR-488/CLSTN3 axis. CONCLUSION: CircAFF2 promotes the injury of neuronal cells and exacerbates ICH via increasing CLSTN3 by sponging miR-488, suggesting that circAFF2 may be a potential therapeutic target for ICH treatment.


Assuntos
Lesões Encefálicas , MicroRNAs , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Hemorragia Cerebral/metabolismo , Hemina/farmacologia , Hemina/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
14.
Metallomics ; 15(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37838477

RESUMO

Heme oxygenase-1 (HO-1) catalyzes the first and rate-limiting enzymatic step of heme degradation, producing carbon monoxide, biliverdin, and free iron. Most iron is derived from aged erythrocytes by the decomposition of heme, which happened mainly in macrophages. However, the role of HO-1 on iron metabolism and function of macrophage is unclear. The present study investigated the effect of HO-1 on iron metabolism in macrophages, and explored the role of HO-1 on inflammatory response, polarization, and migration of macrophages. HO-1 inducer Hemin or HO-1 inhibitor zinc protoporphyrin was intravenously injected to C57BL/6 J mice every 4 d for 28 d. We found that HO-1 was mainly located in the cytoplasm of splenic macrophages of mice. Activation of HO-1 by Hemin significantly increased iron deposition in the spleen, up-regulated the gene expression of ferritin and ferroportin, and down-regulated gene expression of divalent metal transporter 1 and hepcidin. Induced HO-1 by Hemin treatment increased intracellular iron levels of macrophages, slowed down the absorption of extracellular iron, and accelerated the excretion of intracellular iron. In addition, activation of HO-1 significantly decreased the expression of pro-inflammatory cytokines including interleukin (IL)-6, IL-1ß, and inducible nitric oxide synthase, but increased the expression of anti-inflammatory cytokines such as IL-10. Furthermore, activation of HO-1 inhibited macrophages to M1-type polarization, and increased the migration rate of macrophages. This study demonstrated that HO-1 was able to regulate iron metabolism, exert anti-inflammatory effects, and inhibit macrophages polarization to M1 type.


Assuntos
Heme Oxigenase-1 , Hemina , Camundongos , Animais , Heme Oxigenase-1/metabolismo , Hemina/farmacologia , Hemina/metabolismo , Ferro/metabolismo , Camundongos Endogâmicos C57BL , Macrófagos , Citocinas/metabolismo , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia
15.
Commun Biol ; 6(1): 783, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500754

RESUMO

Hematin crystallization is an essential element of heme detoxification of malaria parasites and its inhibition by antimalarial drugs is a common treatment avenue. We demonstrate at biomimetic conditions in vitro irreversible inhibition of hematin crystal growth due to distinct cooperative mechanisms that activate at high crystallization driving forces. The evolution of crystal shape after limited-time exposure to both artemisinin metabolites and quinoline-class antimalarials indicates that crystal growth remains suppressed after the artemisinin metabolites and the drugs are purged from the solution. Treating malaria parasites with the same agents reveals that three- and six-hour inhibitor pulses inhibit parasite growth with efficacy comparable to that of inhibitor exposure during the entire parasite lifetime. Time-resolved in situ atomic force microscopy (AFM), complemented by light scattering, reveals two molecular-level mechanisms of inhibitor action that prevent ß-hematin growth recovery. Hematin adducts of artemisinins incite copious nucleation of nonextendable nanocrystals, which incorporate into larger growing crystals, whereas pyronaridine, a quinoline-class drug, promotes step bunches, which evolve to engender abundant dislocations. Both incorporated crystals and dislocations are known to induce lattice strain, which persists and permanently impedes crystal growth. Nucleation, step bunching, and other cooperative behaviors can be amplified or curtailed as means to control crystal sizes, size distributions, aspect ratios, and other properties essential for numerous fields that rely on crystalline materials.


Assuntos
Antimaláricos , Malária , Quinolinas , Humanos , Hemina/metabolismo , Cristalização , Antimaláricos/farmacologia , Antimaláricos/química , Quinolinas/farmacologia
16.
J Fish Dis ; 46(9): 1001-1012, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37309564

RESUMO

Iron uptake during infection is an essential pathogenicity factor of several bacteria, including Tenacibaculum dicentrarchi, an emerging pathogen for salmonid and red conger eel (Genypterus chilensis) farms in Chile. Iron-related protein families were recently found in eight T. dicentrarchi genomes, but biological studies have not yet confirmed functions. The investigation reported herein clearly demonstrated for the first time that T. dicentrarchi possesses different systems for iron acquisition-one involving the synthesis of siderophores and another allowing for the utilization of heme groups. Using 38 isolates of T. dicentrarchi and the type strain CECT 7612T , all strains grew in the presence of the chelating agent 2.2'-dipyridyl (from 50 to 150 µM) and produced siderophores on chrome azurol S plates. Furthermore, 37 of the 38 T. dicentrarchi isolates used at least four of the five iron sources (i.e. ammonium iron citrate, ferrous sulfate, iron chloride hexahydrate, haemoglobin and/or hemin) when added to iron-deficient media, although the cell yield was less when using hemin. Twelve isolates grew in the presence of hemin, and 10 of them used only 100 µM. Under iron-supplemented or iron-restricted conditions, whole cells of three isolates and the type strain showed at least one membrane protein induced in iron-limiting conditions (c.a. 37.9 kDa), regardless of the isolation host. All phenotypic results were confirmed by in-silico genomic T. dicentrarchi analysis. Future studies will aim to establish a relationship between iron uptake ability and virulence in T. dicentrarchi through in vivo assays.


Assuntos
Doenças dos Peixes , Tenacibaculum , Animais , Ferro/metabolismo , Sideróforos , Hemina/metabolismo , Doenças dos Peixes/microbiologia , Tenacibaculum/genética , Peixes
17.
Appl Environ Microbiol ; 89(7): e0024023, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37338394

RESUMO

Metal ions are essential nutrients for all life forms, and restriction of metal ion availability is an effective host defense against bacterial infection. Meanwhile, bacterial pathogens have developed equally effective means to secure their metal ion supply. The enteric pathogen Yersinia pseudotuberculosis was found to uptake zinc using the T6SS4 effector YezP, which is essential for Zn2+ acquisition and bacterial survival under oxidative stress. However, the mechanism of this zinc uptake pathway has not been fully elucidated. Here, we identified the hemin uptake receptor HmuR for YezP, which can mediate import of Zn2+ into the periplasm by the YezP-Zn2+ complex and demonstrated that YezP functions extracellularly. This study also confirmed that the ZnuCB transporter is the inner membrane transporter for Zn2+ from the periplasm to cytoplasm. Overall, our results reveal the complete T6SS/YezP/HmuR/ZnuABC pathway, wherein multiple systems are coupled to support zinc uptake by Y. pseudotuberculosis under oxidative stress. IMPORTANCE Identifying the transporters involved in import of metal ions under normal physiological growth conditions in bacterial pathogens will clarify its pathogenic mechanism. Y. pseudotuberculosis YPIII, a common foodborne pathogen that infects animals and humans, uptake zinc via the T6SS4 effector YezP. However, the outer and inner transports involved in Zn2+ acquisition remain unknown. The important outcomes of this study are the identification of the hemin uptake receptor HmuR and inner membrane transporter ZnuCB that import Zn2+ into the cytoplasm via the YezP-Zn2+ complex, and elucidation of the complete Zn2+ acquisition pathway consisting of T6SS, HmuRSTUV, and ZnuABC, thereby providing a comprehensive view of T6SS-mediated ion transport and its functions.


Assuntos
Hemina , Infecções por Yersinia pseudotuberculosis , Humanos , Animais , Hemina/metabolismo , Yersinia/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Zinco/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
18.
Mol Oral Microbiol ; 38(4): 289-308, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37134265

RESUMO

Porphyromonas gingivalis, the causative agent of adult periodontitis, must gain resistance to frequent oxidative and nitric oxide (NO) stress attacks from immune cells in the periodontal pocket to survive. Previously, we found that, in the wild-type and under NO stress, the expression of PG1237 (CdhR), the gene encoding for a putative LuxR transcriptional regulator previously called community development and hemin regulator (CdhR), was upregulated 7.7-fold, and its adjacent gene PG1236 11.9-fold. Isogenic mutants P. gingivalis FLL457 (ΔCdhR::ermF), FLL458 (ΔPG1236::ermF), and FLL459 (ΔPG1236-CdhR::ermF) were made by allelic exchange mutagenesis to determine the involvement of these genes in P. gingivalis W83 NO stress resistance. The mutants were black pigmented and ß hemolytic and their gingipain activities varied with strains. FLL457 and FLL459 mutants were more sensitive to NO compared to the wild type, and complementation restored NO sensitivity to that of the wild type. DNA microarray analysis of FLL457 showed that approximately 2% of the genes were upregulated and over 1% of the genes downregulated under NO stress conditions compared to the wild type. Transcriptome analysis of FLL458 and FLL459 under NO stress showed differences in their modulation patterns. Some similarities were also noticed between all mutants. The PG1236-CdhR gene cluster revealed increased expression under NO stress and may be part of the same transcriptional unit. Recombinant CdhR showed binding activity to the predicted promoter regions of PG1459 and PG0495. Taken together, the data indicate that CdhR may play a role in NO stress resistance and be involved in a regulatory network in P. gingivalis.


Assuntos
Óxido Nítrico , Porphyromonas gingivalis , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , Óxido Nítrico/metabolismo , Hemina/metabolismo , Cisteína Endopeptidases Gingipaínas/metabolismo , Perfilação da Expressão Gênica
19.
Thromb Haemost ; 123(7): 679-691, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37037200

RESUMO

INTRODUCTION: Hemolysis results in release of free hemoglobin and hemin liberation from erythrocytes. Hemin has been described to induce platelet activation and to trigger thrombosis. METHODS: We evaluated the effect of hemin on platelet function and surface expression of the platelet collagen receptor glycoprotein VI (GPVI). Isolated platelets were stimulated with increasing concentrations of hemin. RESULTS: We found that hemin strongly enhanced platelet activation, aggregation, and aggregate formation on immobilized collagen under flow. In contrast, we found that surface expression of GPVI was significantly reduced upon hemin stimulation with high hemin concentrations indicating that hemin-induced loss of surface GPVI does not hinder platelet aggregation. Loss of hemin-induced surface expression of GPVI was caused by shedding of the ectodomain of GPVI as verified by immunoblotting and is independent of the GPVI or CLEC-2 mediated ITAM (immunoreceptor-tyrosine-based-activation-motif) signaling pathway as inhibitor studies revealed. Hemin-induced GPVI shedding was independent of metalloproteinases such as ADAM10 or ADAM17, which were previously described to regulate GPVI degradation. Similarly, concentration-dependent shedding of CD62P was also induced by hemin. Unexpectedly, we found that the subtilisin-like proprotein convertase furin controls hemin-dependent GPVI shedding as shown by inhibitor studies using the specific furin inhibitors SSM3 and Hexa-D-arginine. In the presence of SSM3 and Hexa-D-arginine, hemin-associated GPVI degradation was substantially reduced. Further, SSM3 inhibited hemin-induced but not CRP-XL-induced platelet aggregation and thrombus formation, indicating that furin controls specifically hemin-associated platelet functions. CONCLUSION: In summary, we describe a novel mechanism of hemin-dependent GPVI shedding and platelet function mediated by furin.


Assuntos
Furina , Hemina , Humanos , Hemina/farmacologia , Hemina/metabolismo , Furina/metabolismo , Furina/farmacologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Plaquetas/metabolismo , Agregação Plaquetária , Ativação Plaquetária
20.
Brain Res ; 1811: 148373, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105375

RESUMO

Intracerebral hemorrhage (ICH) refers to the hemorrhage caused by the increase and rupture of vascular brittleness in non traumatic brain parenchyma, which has been demonstrated to be closely related to ferroptosis. This study aimed to examine the effects of methyltransferase like 3 (METTL3) on the ferroptosis in the ICH progression. The PC12 cells was stimulated by hemin to establish a ICH model. The cell viability was tested by CCK8 assay. The Fe2+, reactive oxygen species (ROS), and malondialdehyde (MDA) levels were determined by the corresponding commercial kits. The cell death was analyzed by propidium Iodide (PI) staining. The lactylation levels were detected by western blot. M6A dot blot assay was performed to detected the total m6A levels and MeRIP assay was conducted to determine the m6A levels of transferrin receptor (TFRC). We found that the METTL3 and m6A levels were increased in the hemin treated PC12 cells. METTL3 knockdown increased the cell viability and decreased Fe2+, ROS and MDA levels in the hemin treated PC12 cells. The role of METTL3 knockdown in the hemin treated PC12 cells was reversed after TFRC overexpression. Mechanistically, the METTL3 lactylation was increased in the hemin treated PC12 cells, which further enhanced the protein stability and expression of METTL3. The up-regulated METTL3 increased the m6A levels and mRNA expressions of TFRC, which further induced the ferroptosis of the PC12 cells. In conclusion, the up-regulation of METTL3 lactylation enhanced the METTL3 protein stability and expression levels in hemin treated PC12 cells. METTL3 silenced suppressed the ferroptosis development through regulating the m6A levels of TFRC mRNA.


Assuntos
Ferroptose , Ratos , Animais , Metiltransferases/genética , Metiltransferases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hemina/farmacologia , Hemina/metabolismo , Hemorragia Cerebral , Receptores da Transferrina/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...